Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility.
نویسندگان
چکیده
The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are contradictory and do not pay tribute to the fact that probably spatial confinement of the nNOS enzyme is of major importance. We hypothesize that the close proximity of nNOS and certain effector molecules like L-type Ca(2+)-channels has an impact on myocardial contractility. To test this, we generated a new transgenic mouse model allowing conditional, myocardial specific nNOS overexpression. Western blot analysis of transgenic nNOS overexpression showed a 6-fold increase in nNOS protein expression compared with noninduced littermates (n=12; P<0.01). Measuring of total NOS activity by conversion of [(3)H]-l-arginine to [(3)H]-l-citrulline showed a 30% increase in nNOS overexpressing mice (n=18; P<0.05). After a 2 week induction, nNOS overexpression mice showed reduced myocardial contractility. In vivo examinations of the nNOS overexpressing mice revealed a 17+/-3% decrease of +dp/dt(max) compared with noninduced mice (P<0.05). Likewise, ejection fraction was reduced significantly (42% versus 65%; n=15; P<0.05). Interestingly, coimmunoprecipitation experiments indicated interaction of nNOS with SR Ca(2+)ATPase and additionally with L-type Ca(2+)- channels in nNOS overexpressing animals. Accordingly, in adult isolated cardiac myocytes, I(Ca,L) density was significantly decreased in the nNOS overexpressing cells. Intracellular Ca(2+)-transients and fractional shortening in cardiomyocytes were also clearly impaired in nNOS overexpressing mice versus noninduced littermates. In conclusion, conditional myocardial specific overexpression of nNOS in a transgenic animal model reduced myocardial contractility. We suggest that nNOS might suppress the function of L-type Ca(2+)-channels and in turn reduces Ca(2+)-transients which accounts for the negative inotropic effect.
منابع مشابه
Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion.
BACKGROUND We previously demonstrated that conditional overexpression of neuronal nitric oxide synthase (nNOS) inhibited L-type Ca2+ channels and decreased myocardial contractility. However, nNOS has multiple targets within the cardiac myocyte. We now hypothesize that nNOS overexpression is cardioprotective after ischemia/reperfusion because of inhibition of mitochondrial function and a reducti...
متن کاملAcute inhibition of myoglobin impairs contractility and energy state of iNOS-overexpressing hearts.
Elevated cardiac levels of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) have been implicated in the development of heart failure. The surprisingly benign phenotype of recently generated mice with cardiac-specific iNOS overexpression (TGiNOS) provided the rationale to investigate whether NO scavenging by oxymyoglobin (MbO2) yielding nitrate and metmyoglobin (metMb) is in...
متن کاملMolecular Cardiology Conditional Overexpression of Neuronal Nitric Oxide Synthase Is Cardioprotective in Ischemia/Reperfusion
متن کامل
Myocardial contractile function and heart rate in mice with myocyte-specific overexpression of endothelial nitric oxide synthase.
BACKGROUND The major source of nitric oxide (NO) in the heart is the constitutive form of NO synthases (eNOS, NOS III) that is expressed in vascular endothelium and cardiac myocytes. NO mediates endothelium-dependent vasodilation and may modulate cardiac function. We examined the role of NO in hearts from transgenic (TG) mice overexpressing eNOS exclusively in cardiac myocytes. METHODS AND RE...
متن کاملCardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling.
BACKGROUND Defects in cardiomyocyte Ca(2+) cycling are a signature feature of heart failure (HF) that occurs in response to sustained hemodynamic overload, and they largely account for contractile dysfunction. Neuronal nitric oxide synthase (NOS1) influences myocyte excitation-contraction coupling through modulation of Ca(2+) cycling, but the potential relevance of this in HF is unknown. METH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2007